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A Vanadium Carbonyl Trihydride, H3V(CO)3diars 

Sir: 

While noncluster second- and third-row transition metal 
complexes containing more than two coordinated hydride Ii-
gands are now very common, relatively few such first-row 
transition metal complexes have been reported.' The latter are 
H4FeL3 (L = PEt2Ph and PBuPh2)

2 and H3CoL3 (L = various 
phosphines).3 We now report that the first polyhydride com­
plex of vanadium, H3V(CO)3diars (1) (diars = o-phenylene-
bis(dimethylarsine)), is formed rapidly and in good yield 
(60-80%) by the interaction of [Et4N] [V(CO)4diars] (2)4 with 
excess anhydrous or aqueous HX (X = Cl, Br, I) in tetrahy­
drofuran (THF). The same substance is also generated more 
slowly but in higher initial purity from 2 and an excess of 
tert-butyl chloride suspended in water.56 By monitoring in­
frared spectra in the carbonyl stretching region of these reac­
tions, HV(CO)4diars (3)4 has been shown to initially form. 
Excess hydrogen chloride then reacts with 3 to generate 1 and 
phosgene (or CO2 in the presence of water) in approximately 
equal amounts.6 Although the formation of phosgene requires 
the presence of chloride ion, by varying the reaction compo­
nents we have determined that a strong acid is also necessary. 
Thus, 2 or 3 in the presence of neutral water, aqueous NaCl, 
or Bu4NCl in THF do not give 1. Also, moderately strong acids 
having weakly nucleophilic conjugate bases such as aqueous 

H2SO4 and H 4 P O H 3 P 0 4 convert 2 to 3 but do not provide 1. 
On the basis of having established the requirement of HX (X 
= Cl, Br, or I) and formation of phosgene7 during the gener­
ation of 1 the following pathway for the reaction is pro­
posed:8 

HV(CO)4diars + HX 5=S [H2V(CO)4diars+X"l 
z=± [HV(CO)3diars (C(OH)X) 

H X 

=5=* H2V(CO)3diars |C(OH)X2| =^= H3V(CO)3diars + COX2 

(X = Cl, Br, I) 

Although the overall scheme is unprecedented in metal car­
bonyl chemistry, the individual steps are consistent with known 
reactivity patterns of carbonyls.9 For example, nucleophilic 
attack of coordinated carbon monoxide by a variety of groups 
including hydroxide and water10 are known. Protonation of 
metal carbonyls also enhances the susceptibility of coordinated 
carbonyls towards nucleophilic attack.'' The high coordination 
number of vanadium in 3 may favor protonation at a carbonyl 
oxygen rather than the metal center. This latter process may 
be crucial in permitting facile halide attack resulting in the 
eventual elimination of phosgene. 

The physical and chemical properties of 1, the first derivative 
of the unknown trianion V(CO)3diars3~,'2 are noteworthy. Its 
infrared solution spectra in THF show two intense and sharp 
carbonyl stretching frequencies at 1840 and 1779 cm-1, which 
are at unusually low energy for terminal carbonyls in neutral 
complexes.1314 A strongly temperature-dependent 1H NMR 
signal attributable to the hydridic protons is also observed. 
While the signal is too broad to detect at room tempera­
ture,15'16 a well-defined singlet of relative intensity 3 with re­
spect to the 12 methyl-diars protons is observed at r 8.86 in 
CD2Cl2 at —20 0C. The signal retains its sharpness down to 
—70 0C. Compared to most metal hydride chemical shifts, this 
signal occurs at relatively low field but not unprecedentedly 
so.1720 The diars methyl groups in (I) give rise to a pair of 
signals of equal area at r 8.28 and 8.54 in CD2Cl2 which do not 
broaden or coalesce between 25 and —70 0C. 

In contrast to other carbonyl hydrides of vanadium,4'l6'21 

1 is quite unreactive and thermally stable.22 For example, 
unlike 3, which is readily deprotonated to form V(CO)4diars~,4 

attempts to deprotonate 1 with butyllithium failed to provide 
any evidence for the formation of H^VtCO^diars" - (n = 
1, 2, or 3) at —78 0C. Instead, decomposition to uncharacter-
ized species occurred. Although we have been unsuccessful thus 
far in observing any parallels in the chemistry of 1 and the 
other known group Vb trihydrides, M(CsHs)2H3 (M = Nb 
and Ta),23 the photolysis of 1 with an unfiltered medium-
pressure mercury vapor lamp in the presence of carbon mon­
oxide provides substantial yields of 3,4 Evidently, a photoin-
duced elimination of molecular hydrogen from 1 occurs during 
this process, generating coordinatively unsaturated HV-
(CO)3diars which is trapped with carbon monoxide to provide 
the observed product. Similar photochemical processes have 
been reported recently for IrClH->(PPh3)3 and IrH3-
(PPh3)3.

24 

Potentially, the reaction of other metal carbonyls and car­
bonyl monohydrides with hydrogen halides under similar 
conditions could be an important general route to transition 
metal di- and trihydrides. Indeed, we have shown that the 
treatment of HV(CO)4dmpe (dmpe = l,2-bis(dimethyl-
phosphino)ethane) and Nb(CO)4DPPE- (DPPE = 1,2-bis-
(diphenylphosphino)ethane)25 with tert-butyl chloride and 
water provides substances which have infrared spectra very 
similar to that of I.26 However, analogous reactions of HCl or 
tert-butyl chloride-water with related carbonyls give either 
decomposition, no reaction, or other products: HV-
(CO)4DPPE21 (decomposition to VCl3), W(CO)4diars27 (no 
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reaction), Fe(CO)3diars28 (protonation, no further reaction), 
HRe(CO)5

29 (quantitative formation of ClRe(CO)5). Clearly, 
further studies are necessary to determine the scope and lim­
itations of this new procedure for polyhydride synthesis. 
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Sequential Bifunctional Micellar Catalysis 

Sir: 

The comparison of micelles and enzymes is now common­
place,1 but the rational design of functionalized surfactants 
to provide increasingly exact enzyme analogues is a more re­
cent venture.2 A key feature of chymotrypsin catalysis is basic 
activation by an imidazole group (His-57) of the Ser-195 hy­
droxy! moiety; the latter's oxygen is the nucleophile which 
attacks the substrate's carbonyl group.3 Many "model en­
zymes" have been designed to mimic this mechanism.4 Mi-
cellar chymotrypsin models have included hydroxyl-5 and 
imidazole-functionalized6 surfactants, but few studies of bi­
functional micellar catalysts have appeared.7 Mechanistic 
exploration of these systems is crucial to the construction of 
useful micellar enzyme analogues. 

Recently, we described the comparative effectiveness of 
micellized surfactants I-IV at catalyzing the cleavages of p-

CH3 

W-C16H33-N—R2, Cl" 

I 
Ri CH3 

R2 CH,3 

Ii 
CH3 

CH2CH2OH 

m 
CH3 

CH2Im12 

IV 
CH2CH2OH 
CH2Im12 

nitrophenyl acetate and hexanoate (PNPA and PNPH).10 

Based upon relative A;̂ max values," there seemed to be no 
synergism between the hydroxyl and imidazole moieties of IV 
and no reason to suspect significant differences in mechanistic 
behavior between III and IV. However, although the reaction 
of III with PNPA leads to the formation and decay of an 
acetylimidazole intermediate,68 readily observable at 245 nm 
(Figure 1, curve 1), we can observe no such intermediate during 
the analogous reaction of bifunctional catalyst IV (Figure 1, 
curve 2).13 

From a preparative scale reaction of PNPA with IV,14 we 
quantitatively isolated O-acetyl-IV.15 Thus PNPA did not 
acetylate water under the influence of the bifunctional catalyst. 
The failure of IV to furnish an observable acetylimidazole 
intermediate in its reaction with PNPA can be explained in two 
ways: (a) No intermediate is visible because none is ever 
formed; IV behaves as a chymotrypsin analogue and undergoes 
direct O-acetylation, eq 1. (b) Alternatively, an intermediate 
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